An analysis of the regioselectivity of aromatic hydroxylation and N-oxygenation by cytochrome P450 enzymes.

نویسندگان

  • Tamara S Dowers
  • Dan A Rock
  • Denise A Rock
  • Brandon N S Perkins
  • Jeffery P Jones
چکیده

Quinoline was used to probe the steric and electronic contributions to rates of aromatic oxidation of nitrogen-containing, multiring substrates by cytochrome P450 (P450) enzymes. The regioselectivity of the P450 oxidation of quinoline was determined experimentally by identifying and measuring the ratios of metabolites. The laboratory results were compared with those obtained computationally by modeling the electronic effects for aromatic hydroxylation of the substrate. Calculated values predict 8-hydroxyquinoline to have the lowest relative activation energy, whereas 3-hydroxyquinoline was calculated to have the highest relative activation energy. In contrast, 3-hydroxyquinoline was produced to a much greater extent relative to 8-hydroxyquinoline. The sharp contrast observed between the computationally obtained energies and the ratios of products identified experimentally indicates that steric factors play a role in determining the regioselectivity of P450 enzymes with quinoline. To further probe steric contributions to product formation, isoquinoline was used as a substrate and the results were compared with those obtained with quinoline. Isoquinoline N-oxide was determined to be the major metabolite of isoquinoline with all of the P450 enzymes used. These results provide further evidence for the steric influence on the regioselectivity of P450 enzymes with quinoline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic isotope effects implicate a single oxidant for cytochrome P450-mediated O-dealkylation, N-oxygenation, and aromatic hydroxylation of 6-methoxyquinoline.

One major point of controversy in the area of cytochrome P450 (P450)-mediated oxidation reactions is the nature of the active-oxygen species. A number of hypotheses have been advanced which implicate a second oxidant besides the iron-oxo species designated as compound I (Cpd 1). This oxygen is thought to be either an iron-hydroperoxy species (Cpd 0) or a second spin-state of Cpd 1. Very little ...

متن کامل

Short Communication KINETIC ISOTOPE EFFECTS IMPLICATE A SINGLE OXIDANT FOR CYTOCHROME P450- MEDIATED O-DEALKYLATION, N-OXYGENATION, AND AROMATIC HYDROXYLATION OF 6-METHOXYQUINOLINE

One major point of controversy in the area of cytochrome P450 (P450)-mediated oxidation reactions is the nature of the activeoxygen species. A number of hypotheses have been advanced which implicate a second oxidant besides the iron-oxo species designated as compound I (Cpd 1). This oxygen is thought to be either an iron-hydroperoxy species (Cpd 0) or a second spin-state of Cpd 1. Very little i...

متن کامل

Metabolism of carcinogenic heterocyclic and aromatic amines by recombinant human cytochrome P450 enzymes.

The N-hydroxylation of carcinogenic arylamines represents an initial step in their metabolic activation. Animal studies have shown that this reaction is catalyzed by the cytochrome P450 (P450) enzymes P450 1A1 and P450 1A2. In this study, utilizing enzymes expressed in Escherichia coli (and purified) or in human B-lymphoblastoid cells, the catalytic activities of recombinant human P450 1A1, P45...

متن کامل

Enhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis.

The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at...

متن کامل

Short Communication SELECTIVE DEHYDROGENATION/OXYGENATION OF 3-METHYLINDOLE BY CYTOCHROME P450 ENZYMES

3-Methylindole (3 MI) is a selective pulmonary toxicant, and cytochrome P450 (P450) bioactivation of 3 MI, through hydroxylation, epoxidation, or dehydrogenation pathways, is a prerequisite for toxicity. CYP2F1 and CYP2F3 exclusively catalyze the dehydrogenation of 3 MI to 3-methyleneindolenine, without detectable formation of the hydroxylation or epoxidation products. It was not known whether ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 32 3  شماره 

صفحات  -

تاریخ انتشار 2004